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Robust Uncertainty Principles: Exact Signal
Reconstruction From Highly Incomplete

Frequency Information
Emmanuel J. Candès, Justin Romberg, Member, IEEE, and Terence Tao

Abstract—This paper considers the model problem of recon-
structing an object from incomplete frequency samples. Consider
a discrete-time signal and a randomly chosen set of
frequencies 
. Is it possible to reconstruct from the partial
knowledge of its Fourier coefficients on the set 
?

A typical result of this paper is as follows. Suppose that is a
superposition of spikes ( ) = ( ) ( ) obeying

(log ) 1 


for some constant 0. We do not know the locations of the
spikes nor their amplitudes. Then with probability at least 1
( ), can be reconstructed exactly as the solution to the 1

minimization problem

min

1

=0

( ) s.t. ^( ) = (̂ ) for all 


In short, exact recovery may be obtained by solving a convex op-
timization problem. We give numerical values for which de-
pend on the desired probability of success. Our result may be in-
terpreted as a novel kind of nonlinear sampling theorem. In effect,
it says that any signal made out of spikes may be recovered by
convex programming from almost every set of frequencies of size
( log ). Moreover, this is nearly optimal in the sense that

any method succeeding with probability 1 ( ) would in
general require a number of frequency samples at least propor-
tional to log .

The methodology extends to a variety of other situations and
higher dimensions. For example, we show how one can reconstruct
a piecewise constant (one- or two-dimensional) object from in-
complete frequency samples—provided that the number of jumps
(discontinuities) obeys the condition above—by minimizing other
convex functionals such as the total variation of .

Index Terms—Convex optimization, duality in optimization, free
probability, image reconstruction, linear programming, random
matrices, sparsity, total-variation minimization, trigonometric ex-
pansions, uncertainty principle.

Manuscript received June 10, 2004; revised September 9, 2005. the work of E.
J. Candes is supported in part by the National Science Foundation under Grant
DMS 01-40698 (FRG) and by an Alfred P. Sloan Fellowship. The work of J.
Romberg is supported by the National Science Foundation under Grants DMS
01-40698 and ITR ACI-0204932. The work of T. Tao is supported in part by a
grant from the Packard Foundation.

E. J. Candes and J. Romberg are with the Department of Applied and Compu-
tational Mathematics, California Institute of Technology, Pasadena, CA 91125
USA (e-mail: emmanuel@acm.caltech.edu, jrom@acm.caltech.edu).

T. Tao is with the Department of Mathematics, University of California, Los
Angeles, CA 90095 USA (e-mail: tao@math.ucla.edu).

Communicated by A. Høst-Madsen, Associate Editor for Detection and Es-
timation.

Digital Object Identifier 10.1109/TIT.2005.862083

I. INTRODUCTION

I N many applications of practical interest, we often wish to
reconstruct an object (a discrete signal, a discrete image,

etc.) from incomplete Fourier samples. In a discrete setting, we
may pose the problem as follows; let be the Fourier trans-
form of a discrete object ,

The problem is then to recover from partial frequency infor-
mation, namely, from , where belongs
to some set of cardinality less than —the size of the dis-
crete object.

In this paper, we show that we can recover exactly from
observations on small set of frequencies provided that
is sparse. The recovery consists of solving a straightforward
optimization problem that finds of minimal complexity with

, .

A. A Puzzling Numerical Experiment

This idea is best motivated by an experiment with surpris-
ingly positive results. Consider a simplified version of the clas-
sical tomography problem in medical imaging: we wish to re-
construct a two–dimensional image from samples
of its discrete Fourier transform on a star-shaped domain [1].
Our choice of domain is not contrived; many real imaging de-
vices collect high-resolution samples along radial lines at rela-
tively few angles. Fig. 1(b) illustrates a typical case where one
gathers 512 samples along each of 22 radial lines.

Frequently discussed approaches in the literature of medical
imaging for reconstructing an object from polar frequency sam-
ples are the so-called filtered backprojection algorithms. In a
nutshell, one assumes that the Fourier coefficients at all of the
unobserved frequencies are zero (thus reconstructing the image
of “minimal energy” under the observation constraints). This
strategy does not perform very well, and could hardly be used
for medical diagnostics [2]. The reconstructed image, shown in
Fig. 1(c), has severe nonlocal artifacts caused by the angular un-
dersampling. A good reconstruction algorithm, it seems, would
have to guess the values of the missing Fourier coefficients.
In other words, one would need to interpolate . This
seems highly problematic, however; predictions of Fourier coef-
ficients from their neighbors are very delicate, due to the global
and highly oscillatory nature of the Fourier transform. Going
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Fig. 1. Example of a simple recovery problem. (a) The Logan–Shepp phantom test image. (b) Sampling domain
 in the frequency plane; Fourier coefficients are
sampled along 22 approximately radial lines. (c) Minimum energy reconstruction obtained by setting unobserved Fourier coefficients to zero. (d) Reconstruction
obtained by minimizing the total variation, as in (1.1). The reconstruction is an exact replica of the image in (a).

back to the example in Fig. 1, we can see the problem
immediately. To recover frequency information near

, where is near , we would
need to interpolate at the Nyquist rate . However, we
only have samples at rate about ; the sampling rate is
almost 50 times smaller than the Nyquist rate!

We propose instead a strategy based on convex optimization.
Let be the total-variation norm of a two-dimensional
(2D) object . For discrete data ,

where is the finite difference
and . To recover from par-
tial Fourier samples, we find a solution to the optimization
problem

subject to for all (1.1)

In a nutshell, given partial observation , we seek a solution
with minimum complexity—called here the total variation

(TV)—and whose “visible” coefficients match those of the un-
known object . Our hope here is to partially erase some of
the artifacts that classical reconstruction methods exhibit (which
tend to have large TV norm) while maintaining fidelity to the ob-
served data via the constraints on the Fourier coefficients of the
reconstruction. (Note that the TV norm is widely used in image
processing, see [31] for example.)

When we use (1.1) for the recovery problem illustrated in
Fig. 1 (with the popular Logan–Shepp phantom as a test image),
the results are surprising. The reconstruction is exact; that is,

This numerical result is also not special to this phantom.
In fact, we performed a series of experiments of this type and
obtained perfect reconstruction on many similar test phantoms.

B. Main Results

This paper is about a quantitative understanding of this very
special phenomenon. For which classes of signals/images can
we expect perfect reconstruction? What are the tradeoffs be-
tween complexity and number of samples? In order to answer
these questions, we first develop a fundamental mathematical
understanding of a special 1D model problem. We then exhibit
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reconstruction strategies which are shown to exactly reconstruct
certain unknown signals, and can be extended for use in a va-
riety of related and sophisticated reconstruction applications.

For a signal , we define the classical discrete Fourier
transform by

(1.2)

If we are given the value of the Fourier coefficients for
all frequencies , then one can obviously reconstruct
exactly via the Fourier inversion formula

Now suppose that we are only given the Fourier coefficients
sampled on some partial subset of all frequencies. Of
course, this is not enough information to reconstruct exactly
in general; has degrees of freedom and we are only spec-
ifying of those degrees (here and below denotes
the cardinality of ).

Suppose, however, that we also specify that is supported
on a small (but a priori unknown) subset of ; that is, we
assume that can be written as a sparse superposition of spikes

In the case where is prime, the following theorem tells us that
it is possible to recover exactly if is small enough.

Theorem 1.1: Suppose that the signal length is a prime
integer. Let be a subset of , and let be a
vector supported on such that

(1.3)

Then can be reconstructed uniquely from and . Con-
versely, if is not the set of all frequencies, then there exist
distinct vectors , such that
and such that .

Proof: We will need the following lemma [3], from which
we see that with knowledge of , we can reconstruct uniquely
(using linear algebra) from .

Lemma 1.2: ([3, Corollary 1.4]) Let be a prime integer and
, be subsets of . Put (resp., ) to be the space

of signals that are zero outside of (resp., ). The restricted
Fourier transform is defined as

for all

If , then is a bijection; as a consequence, we
thus see that is injective for and surjective for

. Clearly, the same claims hold if the Fourier transform
is replaced by the inverse Fourier transform .

To prove Theorem 1.1, assume that . Suppose
for contradiction that there were two objects , such that

and . Then the Fourier

transform of vanishes on , and .
By Lemma 1.2, we see that is injective, and thus

. The uniqueness claim follows.
We now examine the converse claim. Since , we can

find disjoint subsets , of such that
and . Let be some frequency which does
not lie in . Applying Lemma 1.2, we have that
is a bijection, and thus we can find a vector supported on
whose Fourier transform vanishes on but is nonzero on ; in
particular, is not identically zero. The claim now follows by
taking and .

Note that if is not prime, the lemma (and hence the the-
orem) fails, essentially because of the presence of nontrivial
subgroups of with addition modulo ; see Sections I-C and
-D for concrete counter examples, and [3], [4] for further dis-
cussion. However, it is plausible to think that Lemma 1.2 con-
tinues to hold for nonprime if and are assumed to be
generic—in particular, they are not subgroups of , or cosets
of subgroups. If and are selected uniformly at random, then
it is expected that the theorem holds with probability very close
to one; one can indeed presumably quantify this statement by
adapting the arguments given above but we will not do so here.
However, we refer the reader to Section I-G for a rapid presen-
tation of informal arguments pointing in this direction.

A refinement of the argument in Theorem 1.1 shows that for
fixed subsets , in the time domain and in the frequency
domain, the space of vectors , supported on , such that

has dimension when ,
and has dimension otherwise. In particular, if we let

denote those vectors whose support has size at most ,
then the set of vectors in which cannot be reconstructed
uniquely in this class from the Fourier coefficients sampled at

, is contained in a finite union of linear spaces of dimension
at most . Since itself is a finite union of linear
spaces of dimension , we thus see that recovery of from

is in principle possible generically whenever
; once , however, it is clear from simple

degrees-of-freedom arguments that unique recovery is no longer
possible. While our methods do not quite attain this theoretical
upper bound for correct recovery, our numerical experiements
suggest that they do come within a constant factor of this bound
(see Fig. 2).

Theorem 1.1 asserts that one can reconstruct from fre-
quency samples (and that, in general, there is no hope to do so
from fewer samples). In principle, we can recover exactly by
solving the combinatorial optimization problem

(1.4)

where is the number of nonzero terms .
This is a combinatorial optimization problem, and solving (1.4)
directly is infeasible even for modest-sized signals. To the best
of our knowledge, one would essentially need to let vary over
all subsets of cardinality ,
checking for each one whether is in the range of or
not, and then invert the relevant minor of the Fourier matrix to
recover once is determined. Clearly, this is computationally
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very expensive since there are exponentially many subsets to
check; for instance, if , then the number of subsets
scales like ! As an aside comment, note that it is also
not clear how to make this algorithm robust, especially since the
results in [3] do not provide any effective lower bound on the
determinant of the minors of the Fourier matrix, see Section VI
for a discussion of this point.

A more computationally efficient strategy for recovering
from and is to solve the convex problem

(1.5)

The key result in this paper is that the solutions to and
are equivalent for an overwhelming percentage of the choices
for and with ( is a constant): in
these cases, solving the convex problem recovers exactly.

To establish this upper bound, we will assume that the ob-
served Fourier coefficients are randomly sampled. Given the
number of samples to take in the Fourier domain, we choose
the subset uniformly at random from all sets of this size; i.e.,
each of the possible subsets are equally likely. Our main
theorem can now be stated as follows.

Theorem 1.3: Let be a discrete signal supported on
an unknown set , and choose of size uniformly
at random. For a given accuracy parameter , if

(1.6)

then with probability at least , the minimizer to
the problem (1.5) is unique and is equal to .

Notice that (1.6) essentially says that is of size ,
modulo a constant and a logarithmic factor. Our proof gives an
explicit value of , namely, (valid for

, , and , say) although we have not
pursued the question of exactly what the optimal value might
be.

In Section V, we present numerical results which suggest that
in practice, we can expect to recover most signals more than
50% of the time if the size of the support obeys . By
most signals, we mean that we empirically study the success rate
for randomly selected signals, and do not search for the worst
case signal —that which needs the most frequency samples.
For , the recovery rate is above 90%. Empirically,
the constants and do not seem to vary for in the range
of a few hundred to a few thousand.

C. For Almost Every

As the theorem allows, there exist sets and functions for
which the -minimization procedure does not recover cor-
rectly, even if is much smaller than . We sketch
two counter examples.

• A discrete Dirac comb. Suppose that is a perfect square
and consider the picket-fence signal which consists of
spikes of unit height and with uniform spacing equal to

. This signal is often used as an extremal point for
uncertainty principles [4], [5] as one of its remarkable

properties is its invariance through the Fourier transform.
Hence, suppose that is the set of all frequencies but the
multiples of , namely, . Then
and obviously the reconstruction is identically zero.
Note that the problem here does not really have anything
to do with -minimization per se; cannot be recon-
structed from its Fourier samples on thereby showing
that Theorem 1.1 does not work “as is” for arbitrary
sample sizes.

• Boxcar signals. The example above suggests that in some
sense must not be greater than about . In fact,
there exist more extreme examples. Assume the sample
size is large and consider, for example, the indicator
function of the interval

and let be the set . Let
be a function whose Fourier transform is a nonnegative
bump function adapted to the interval

which equals when .
Then has Fourier transform vanishing in , and
is rapidly decreasing away from ; in particular, we
have for . On the other hand,
one easily computes that for some absolute
constant . Because of this, the signal
will have smaller -norm than for sufficiently
small (and sufficiently large), while still having the
same Fourier coefficients as on . Thus, in this case
is not the minimizer to the problem , despite the fact
that the support of is much smaller than that of .

The above counter examples relied heavily on the special
choice of (and to a lesser extent of ); in particular,
it needed the fact that the complement of contained a large
interval (or more generally, a long arithmetic progression). But
for most sets , large arithmetic progressions in the complement
do not exist, and the problem largely disappears. In short, The-
orem 1.3 essentially says that for most sets of of size about

, there is no loss of information.

D. Optimality

Theorem 1.3 states that for any signal supported on an ar-
bitrary set in the time domain, recovers exactly—with
high probability— from a number of frequency samples that
is within a constant of . It is natural to wonder
whether this is a fundamental limit. In other words, is there an
algorithm that can recover an arbitrary signal from far fewer
random observations, and with the same probability of success?

It is clear that the number of samples needs to be at least
proportional to , otherwise, will not be injective. We
argue here that it must also be proportional to to guar-
antee recovery of certain signals from the vast majority of sets

of a certain size.
Suppose is the Dirac comb signal discussed in the previous

section. If we want to have a chance of recovering , then at
the very least, the observation set and the frequency support

must overlap at one location; otherwise, all of
the observations are zero, and nothing can be done. Choosing
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uniformly at random, the probability that it includes none of the
members of is

where we have used the assumption that .
Then for to be smaller than , it must be
true that

and if we make the restriction that cannot be as large as ,

meaning that , we have

For the Dirac comb then, any algorithm must have
observations for the identified probability of suc-

cess.
Examples for larger supports exist as well. If is an

even power of two, we can superimpose Dirac combs at
dyadic shifts to construct signals with time-domain support

and frequency-domain support
for . The same argument as above would
then dictate that

In short, Theorem 1.3 identifies a fundamental limit. No re-
covery can be successful for all signals using significantly fewer
observations.

E. Extensions

As mentioned earlier, results for our model problem extend
easily to higher dimensions and alternate recovery scenarios. To
be concrete, consider the problem of recovering a 1D piecewise-
constant signal via

subject to (1.7)

where we adopt the convention that . In a
nutshell, model (1.5) is obtained from (1.7) after differentiation.
Indeed, let be the vector of first difference

, and note that . Obviously

for all

and, therefore, with , the problem is
identical to

s.t.

which is precisely what we have been studying.

Corollary 1.4: Put . Under
the assumptions of Theorem 1.3, the minimizer to the
problem (1.7) is unique and is equal with probability at
least —provided that be adjusted so that

.

We now explore versions of Theorem 1.3 in higher dimen-
sions. To be concrete, consider the 2D situation (statements in
arbitrary dimensions are exactly of the same flavor).

Theorem 1.5: Put . We let ,
be a discrete real-valued image and of a certain size be

chosen uniformly at random. Assume that for a given accuracy
parameter , is supported on obeying (1.6). Then with
probability at least , the minimizer to the problem
(1.5) is unique and is equal to .

We will not prove this result as the strategy is exactly parallel
to that of Theorem 1.3. Letting be the horizontal finite dif-
ferences and be the
vertical analog, we have just seen that we can think about the
data as the properly renormalized Fourier coefficients of
and . Now put , where . Then the
minimum total-variation problem may be expressed as

subject to (1.8)

where is a partial Fourier transform. One then obtains a
statement for piecewise constant 2D functions, which is sim-
ilar to that for sparse one–dimensional (1D) signals provided
that the support of be replaced by

. We omit the details.
The main point here is that there actually are a variety of re-

sults similar to Theorem 1.3. Theorem 1.5 serves as another
recovery example, and provides a precise quantitative under-
standing of the “surprising result” discussed at the beginning
of this paper.

To be complete, we would like to mention that for complex
valued signals, the minimum problem (1.5) and, therefore,
the minimum TV problem (1.1) can be recast as special convex
programs known as second-order cone programs (SOCPs). For
example, (1.8) is equivalent to

subject to

(1.9)

with variables , , and in ( and are the real and
imaginary parts of ). If in addition, is real valued, then this
is a linear program. Much progress has been made in the past
decade on algorithms to solve both linear and second-order cone
programs [6], and many off-the-shelf software packages exist
for solving problems such as and (1.9).

F. Relationship to Uncertainty Principles

From a certain point of view, our results are connected to
the so-called uncertainty principles [4], [5] which say that it is
difficult to localize a signal both in time and frequency
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at the same time. Indeed, classical arguments show that is the
unique minimizer of if and only if

Put and apply the triangle inequality

Hence, a sufficient condition to establish that is our unique
solution would be to show that

or, equivalently, . The connection with the
uncertainty principle is now explicit; is the unique minimizer
if it is impossible to concentrate half of the norm of a signal
that is missing frequency components in on a “small” set .
For example, [4] guarantees exact reconstruction if

Take , then that condition says that must be zero
which is far from being the content of Theorem 1.3.

By refining these uncertainty principles, [7] shows that a
much stronger recovery result is possible. The central results
of [7] imply that a signal consisting of spikes which are
spread out in a somewhat even manner in the time domain can
be recovered from lowpass observations. Theorem 1.3
is different in that it applies to all signals with a certain support
size, and does not rely on a special choice of (almost any
which is large enough will work). The price for this additional
power is that we require a factor of more observations.

In truth, this paper does not follow this classical approach of
deriving a recovery condition directly from an uncertainty prin-
ciple. Instead, we will use duality theory to study the solution
of . However, a byproduct of our analysis will be a novel
uncertainty principle that holds for generic sets , .

G. Robust Uncertainty Principles

Underlying our results is a new notion of uncertainty prin-
ciple which holds for almost any pair . With

and , the classical discrete uncer-
tainty principle [4] says that

(1.10)

with equality obtained for signals such as the Dirac comb. As
we mentioned earlier, such extremal signals correspond to very
special pairs . However, for most choices of and , the
analysis presented in this paper shows that it is impossible to
find such that and unless

(1.11)

which is considerably stronger than (1.10). Here, the statement
“most pairs” says again that the probability of selecting a
random pair violating (1.11) is at most .

In some sense, (1.11) is the typical uncertainty relation one
can generally expect (as opposed to (1.10)), hence, justifying
the title of this paper. Because of space limitation, we are unable
to elaborate on this fact and its implications further, but will do
so in a companion paper.

H. Connections With Existing Work

The idea of relaxing a combinatorial problem into a convex
problem is not new and goes back a long way. For example, [8],
[9] used the idea of minimizing norms to recover spike trains.
The motivation is that this makes available a host of compu-
tationally feasible procedures. For example, a convex problem
of the type (1.5) can be practically solved using techniques of
linear programming such as interior point methods [10].

Using an minimization program to recover sparse signals
has been proposed in several different contexts. Early work in
geophysics [9], [11], [12] centered on super-resolving spike
trains from band-limited observations, i.e., the case where
consists of low-pass frequencies. Later works [4], [7] provided
a unified framework in which to interpret these results by
demonstrating that the effectiveness of recovery via minimizing

was linked to discrete uncertainty principles. As mentioned
in Section I-F, these papers derived explicit bounds on the
number of frequency samples needed to reconstruct a sparse
signal. The earlier [4] also contains a conjecture that more pow-
erful uncertainty principles may exist if one of , is chosen
at random, which is essentially the content of Section I-G here.

More recently, there exists a series of beautiful papers [5],
[13]–[16] concerned with problem of finding the sparsest de-
composition of a signal using waveforms from a highly over-
complete dictionary . One seeks the sparsest such that

(1.12)

where the number of columns from is greater than the
sample size . Consider the solution which minimizes the
norm of subject to the constraint (1.12) and that which min-
imizes the norm. A typical result of this body of work is as
follows: suppose that can be synthesized out of very few el-
ements from , then the solution to both problems are unique
and are equal. We also refer to [17], [18] for very recent results
along these lines.

This literature certainly influenced our thinking in the sense it
made us suspect that results such as Theorem 1.3 were actually
possible. However, we would like to emphasize that the claims
presented in this paper are of a substantially different nature. We
give essentially two reasons.

1) Our model problem is different since we need to “guess”
a signal from incomplete data, as opposed to finding the
sparsest expansion of a fully specified signal.

2) Our approach is decidedly probabilistic—as opposed
to deterministic—and thus calls for very different tech-
niques. For example, underlying our analysis are delicate
estimates for the norms of certain types of random ma-
trices, which may be of independent interest.
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Apart from the wonderful properties of , several novel sam-
pling theorems have been introduced in recent years. In [19],
[20], the authors study universal sampling patters that allow the
exact reconstruction of signals supported on a small set. In [21],
ideas from spectral analysis are leveraged to show that a se-
quence of spikes can be recovered exactly from
consecutive Fourier samples (in [21], for example, the recovery
requires solving a system of equations and factoring a polyno-
mial). Our results, namely, Theorems 1.1 and 1.3 require slightly
more samples to be taken ( versus ), but are
again more general in that they address the radically different
situation in which we do not have the freedom to choose the
sample locations at our convenience.

Finally, it is interesting to note that our results and the
references above are also related to recent work [22] in finding
near-best -term Fourier approximations (which is in some
sense the dual to our recovery problem). The algorithm in [22],
[23], which operates by estimating the frequencies present in
the signal from a small number of randomly placed samples,
produces with high probability an approximation in sublinear
time with error within a constant of the best -term approx-
imation. First, in [23] the samples are again selected to be
equispaced whereas we are not at liberty to choose the fre-
quency samples at all since they are specified a priori. And
second, we wish to produce as a result an entire signal or image
of size , so a sublinear algorithm is an impossibility.

I. Random Sensing

Against this background, the main contribution of this paper
is the idea that one can use randomness as a sensing mechanism;
that is, as a way of extracting information about an object of
interest from a small number of randomly selected observations.
For example, we have seen that if an object has a sparse gradient,
then we can “image” this object by measuring a few Fourier
samples at random locations, rather than by acquiring a large
number of pixels.

This point of view is very broad. Suppose we wish to recon-
struct a signal assumed to be sparse in a fixed basis, e.g.,
a wavelet basis. Then by applying random sensing—taking a
small number of random measurements—the number of mea-
surement we need depends far more upon the structural content
of the signal (the number of significant terms in the wavelet ex-
pansion) than the resolution . From a quantitative viewpoint,
our methodology should certainly be amenable to such general
situations, as we will discuss further in Section VI-C.

II. STRATEGY

There exists at least one minimizer to but it is not clear
why this minimizer should be unique, and why it should equal

. In this section, we outline our strategy for answering these
questions. In Section II-A, we use duality theory to show that

is the unique solution to if and only if a trigonometric
polynomial with certain properties exists (a similar duality ap-
proach was independently developed in [24] for finding sparse
approximations from general dictionaries). We construct a spe-
cial polynomial in Section II-B and the remainder of the paper

is devoted to showing that if (1.6) holds, then our polynomial
obeys the required properties.

A. Duality

Suppose that is supported on , and we observe on a set
. The following lemma shows that a necessary and sufficient

condition for the solution to be the solution to is the exis-
tence of a trigonometric polynomial whose Fourier transform
is supported on , matches on , and has magnitude
strictly less than elsewhere.

Lemma 2.1: Let . For a vector with
, define the sign vector when

and otherwise. Suppose there exists a vector
whose Fourier transform is supported in such that

for all (2.13)

and

for all (2.14)

Then if is injective, the minimizer to the problem
is unique and is equal to . Conversely, if is the unique

minimizer of , then there exists a vector with the above
properties.

This is a result in convex optimization whose proof is given
in the Appendix.

Since the space of functions with Fourier transform supported
in has degrees of freedom, and the condition that match

on requires degrees of freedom, one now expects
heuristically (if one ignores the open conditions that has mag-
nitude strictly less than outside of ) that should be unique
and be equal to whenever ; in particular, this gives
an explicit procedure for recovering from and .

B. Architecture of the Argument

We will show that we can recover supported on from
observations on almost all sets obeying (1.6) by constructing
a particular polynomial (that depends on and ) which
automatically satisfies the equality constraints (2.13) on , and
then showing the inequality constraints (2.14) on hold with
high probability.

With , and if is injective (has full column
rank), there are many trigonometric polynomials supported on
in the Fourier domain which satisfy (2.13). We choose, with the
hope that its magnitude on is small, the one with minimum
energy

(2.15)

where is the Fourier transform followed
by a restriction to the set ; the embedding operator

extends a vector on to a vector on
by placing zeros outside of ; and is the dual restriction map

. It is easy to see that is supported on , and
noting that , also satisfies (2.13)

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 06:05 from IEEE Xplore.  Restrictions apply.



496 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 2, FEBRUARY 2006

Fixing and its support , we will prove Theorem 1.3 by
establishing that if the set is chosen uniformly at random from
all sets of size , then

1) Invertibility. The operator is injective, meaning
that in (2.15) is invertible, with probability

.
2) Magnitude on . The function in (2.15) obeys

for all again with probability .
Making these arguments directly for the case where of a cer-
tain size is chosen uniformly at random would be complicated,
as the probability of a particular frequency being included in
the set would depend on whether or not each other frequency
is included. To simplify the analysis, the next subsection intro-
duces a Bernoulli probability model for selecting the set , and
shows how results using this model can be translated into results
for the uniform probability model.

C. The Bernoulli Model

A set of Fourier coefficients is sampled using the Bernoulli
model with parameter by first creating the sequence

with probability
with probability

(2.16)

and then setting

(2.17)

The size of the set is also random, following a binomial dis-
tribution, and . In fact, classical large deviations
arguments tell us that as gets large, with high
probability.

With this pobability model, we establish two formal state-
ments showing that in (2.15) obeys the conditions of Lemma
2.1. Both are proven in Section III.

Theorem 2.2: Let be a fixed subset, and choose using
the Bernoulli model with parameter . Suppose that

(2.18)

where is the same as in Theorem 1.3. Then
is invertible with probability at least .

Lemma 2.3: Under the assumptions of Theorem 2.2, in
(2.15) obeys for all with probability at least

.

We now explain why these two claims give Theorem 1.3.
Define as the event where no dual polynomial ,
supported on in the Fourier domain, exists that obeys the
conditions (2.13) and (2.14) above. Let of size be drawn
using the uniform model, and let be drawn from the Bernoulli
model with . We have

where is selected uniformly at random with . We
make two observations.

• is a nonincreasing function of . This
follows directly from the fact that

(the larger becomes, it only becomes easier to construct
a valid ).

• Since is an integer, it is the median of

(See [25] for a proof.)
With the above in mind, we continue

Thus, if we can bound the probability of failure for the Bernoulli
model, we know that the failure rate for the uniform model will
be no more than twice as large.

III. CONSTRUCTION OF THE DUAL POLYNOMIAL

The Bernoulli model holds throughout this section, and we
carefully examine the minimum energy dual polynomial de-
fined in (2.15) and establish Theorem 2.2 and Lemma 2.3. The
main arguments hinge on delicate moment bounds for random
matrices, which are presented in Section IV. From here on forth,
we will assume that since the claim is vacuous
otherwise (as we will see, and thus (1.6) will force

, at which point it is clear that the solution to is equal
to ).

We will find it convenient to rewrite (2.15) in terms of the
auxiliary matrix

(3.19)

and define

To see the relevance of the operators and , observe that

where is the identity for (note that ). Then
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The point here is to separate the constant diagonal of
(which is everywhere) from the highly

oscillatory off-diagonal. We will see that choosing at random
makes essentially a “noise” matrix, making
well conditioned.

A. Invertibility

We would like to establish invertibility of the matrix
with high probability. One way to proceed would be to

show that the operator norm (i.e., the largest eigenvalue) of
is less than . A straightforward way to do this is to bound the
operator norm by the Frobenius norm

(3.20)

where is the matrix element at row and column .
Using relatively simple statistical arguments, we can show

that with high probability . Applying (3.20)
would then yield invertibility when . To show that

is “small” for larger sets (recall that
is the desired result), we use estimates of the Frobenius norm of
a large power of , taking advantage of cancellations arising
from the randomness of the matrix coefficients of .

Our argument relies on a key estimate which we introduce
now and shall be discussed in greater detail in Section III-B.
Assume that and . Then
the th moment of obeys

(3.21)

Now this moment bound gives an estimate for the operator
norm of . To see this, note that since is self-adjoint

Letting be a positive number , it follows from the
Markov inequality that

We then apply inequality (3.21) (recall )
and obtain

(3.22)

We remark that the last inequality holds for any sample size
(with the proviso that ) and we now

specialize (3.22) to selected values of .

Theorem 3.1: Assume that and suppose that
obeys

for some (3.23)

Then

(3.24)

Select which corresponds to the assump-
tions of Theorem 2.2. Then the operator is invertible
with probability at least .

Proof: The first part of the theorem follows from (3.22).
For the second part, we begin by observing that a typical appli-
cation of the large deviation theorem gives

(3.25)

Slightly more precise estimates are possible, see [26]. It then
follows that

(3.26)

where

We will denote by the event .
We now take and and as-

sume that obeys (3.23) (note that obeys the assumptions
of Theorem 2.2). Put . Then

and on the complement of , we have

Hence, is invertible with the desired probability.

We have thus established Theorem 2.2, and thus is well
defined with high probability.

To conclude this section, we would like to emphasize that our
analysis gives a rather precise estimate of the norm of .

Corollary 3.2: Assume, for example, that
and set . For any , we

have

as .
Proof: Put . The Markov in-

equality gives

Select so that

For this , (3.21). Therefore, the proba-
bility is bounded by which goes to zero as

goes to infinity.
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B. The Key Estimate

Our key estimate (3.21) is stated below. The proof is technical
and deferred to Section IV.

Theorem 3.3: Let and . With
the Bernoulli model, if , then

(3.27a)

and if

(3.27b)

In other words, when , the th moment
obeys (3.21).

C. Magnitude of the Polynomial on the Complement of

In the remainder of Section III, we argue that
with high probability and prove

Lemma 2.3. We first develop an expression for by making
use of the algebraic identity

Indeed, we can write

where

so that the inverse is given by the truncated Neumann series

(3.28)

The point is that the remainder term is quite small in the
Frobenius norm: suppose that , then

In particular, the matrix coefficients of are all individually
less than . Introduce the -norm of a matrix as

which is also given by

It follows from the Cauchy–Schwarz inequality that

where by we mean the number of columns of . This
observation gives the crude estimate

(3.29)

As we shall soon see, the bound (3.29) allows us to effectively
neglect the term in this formula; the only remaining difficulty
will be to establish good bounds on the truncated Neumann se-
ries .

D. Estimating the Truncated Neumann Series

From (2.15) we observe that on the complement of

since the component in (2.15) vanishes outside of . Applying
(3.28), we may rewrite as

where

and

Let be two numbers with . Then

and the idea is to bound each term individually. Put
so that . With these

notations, observe that

Hence, bounds on the magnitude of will follow from
bounds on together with bounds on the magnitude of

. It will be sufficient to derive bounds on (since
) which will follow from those on since

is nearly equal to (they differ by only one very small
term).

Fix and write as

The idea is to use moment estimates to control the size of each
term .

Lemma 3.4: Set . Then obeys the
same estimate as that in Theorem 3.3 (up to a multiplicative
factor ), namely

(3.30)
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where is the right-hand side of (3.27). In particular, fol-
lowing (3.21)

(3.31)

provided that .

The proof of these moment estimates mimics that of The-
orem 3.3 and may be found in the Appendix.

Lemma 3.5: Fix . Suppose that obeys (3.23)
and let be the set where with as
in (3.26). For each , there is a set with the property

and

on

As a consequence

and similarly for .
Proof: We suppose that is of the form (this

property is not crucial and only simplifies our exposition). For
each and such that , it follows from (3.23) and
(3.31) together with some simple calculations that

(3.32)

Again, and we will develop a bound on the set
where . On this set

Fix , , such that . Obviously

where . Observe that for each with
, obeys and, therefore, (3.32) gives

For example, taking to be constant for all , i.e., equal to
, gives

with . Numerical calculations show that for
, which gives

(3.33)
The claim for is identical and the lemma follows.

Lemma 3.6: Fix . Suppose that the pair
obeys . Then

on the event , for some obeying
.

Proof: As we observed before, 1)
, and 2) obeys the bound stated

in Lemma 3.5. Consider then the event . On
this event, if . The matrix

obeys since has columns and each
matrix element is bounded by (note that far better bounds
are possible). It then follows from (3.29) that

with probability at least . We then simply need to
choose and such that the right-hand side is less than .

E. Proof of Lemma 2.3

We have now assembled all the intermediate results to prove
Lemma 2.3 (and hence our main theorem). Indeed, we proved
that for all (again with high probability), pro-
vided that and be selected appropriately as we now explain.

Fix . We choose , where is taken
as in (3.26), and to be the nearest integer to .

1) With this special choice,
and, therefore, Lemma 3.5 implies that both

and are bounded by outside of with
probability at least .

2) Lemma 3.6 assures that it is sufficient to have
to have on .

Because and ,
this condition is approximately equivalent to

Take , for example; then the above inequality is
satisfied as soon as .

To conclude, Lemma 2.3 holds with probability exceeding
if obeys
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In other words, we may take in Theorem 1.3 to be of the
form

(3.34)

IV. MOMENTS OF RANDOM MATRICES

This section is devoted entirely to proving Theorem 3.3 and
it may be best first to sketch how this is done. We begin in
Section IV-A by giving a preliminary expansion of the quan-
tity . However, this expansion is not easily manip-
ulated, and needs to be rearranged using the inclusion–exclu-
sion formula, which we do in Section IV-B, and some elements
of combinatorics (the Stirling number identities) which we give
in Section IV-C. This allows us to establish a second, more us-
able, expansion for in Section IV-D. The proof of
the theorem then proceeds by developing a recursive inequality
on the central term in this second expansion, which is done in
Section IV-E.

Before we begin, we wish to note that the study of the eigen-
values of operators like has a bit of historical precedence
in the information theory community. Note that is
essentially the composition of three projection operators; one
that “time limits” a function to , followed by a “bandlimiting”
to , followed by a final restriction to . The distribution of
the eigenvalues of such operators was studied by Landau and
others [27]–[29] while developing the prolate spheroidal wave
functions that are now commonly used in signal processing and
communications. This distribution was inferred by examining
the trace of large powers of this operator (see [29] in particular),
much as we will do here.

A. First Formula for the Expected Value of the Trace of

Recall that , , is the matrix whose
entries are defined by

(4.35)
A diagonal element of the th power of may be expressed
as

where we adopt the convention that whenever con-
venient and, therefore,

Using (2.17) and linearity of expectation, we can write this as

The idea is to use the independence of the ’s to
simplify this expression substantially; however, one has to be
careful with the fact that some of the ’s may be the same,
at which point one loses independence of those indicator vari-
ables. These difficulties require a certain amount of notation.
We let be the set of all frequencies
as before, and let be the finite set . For all

, we define the equivalence relation on
by saying that if and only if . We let

be the set of all equivalence relations on . Note that there
is a partial ordering on the equivalence relations as one can
say that if is coarser than , i.e., implies

for all . Thus, the coarsest element in is
the trivial equivalence relation in which all elements of are
equivalent (just one equivalence class), while the finest element
is the equality relation , i.e., each element of belongs to a
distinct class ( equivalence classes).

For each equivalence relation in , we can then define the
sets by

and the sets by

Thus, the sets form a partition of . The sets
can also be defined as

whenever

For comparison, the sets can be defined as

whenever

and whenever

We give an example: suppose and fix such that
and (exactly two equivalence classes); then

and

while

Now, let us return to the computation of the expected value.
Because the random variables in (2.16) are independent and
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have all the same distribution, the quantity de-
pends only on the equivalence relation and not on the value
of itself. Indeed, we have

where denotes the equivalence classes of . Thus, we can
rewrite the preceding expression as (4.36) at the bottom of the
page, where ranges over all equivalence relations.

We would like to pause here and consider (4.36). Take ,
for example. There are only two equivalent classes on
and, therefore, the right-hand side is equal to

Our goal is to rewrite the expression inside the brackets so that
the exclusion does not appear any longer, i.e., we
would like to rewrite the sum over in terms
of sums over , and over . In this
special case, this is quite easy as

The motivation is as follows: removing the exclusion allows to
rewrite sums as product, e.g.,

and each factor is equal to either or depending on whether
or not.

Section IV-B generalizes these ideas and develops an identity,
which allows us to rewrite sums over in terms of sums
over .

B. Inclusion–Exclusion Formulae

Lemma 4.1: (Inclusion–exclusion principle for equivalence
classes) Let and be nonempty finite sets. For any equiva-
lence class on , we have

(4.37)

Thus, for instance, if and is the equality
relation, i.e., if and only if , this identity is saying
that

where we have omitted the summands for brevity.
Proof: By passing from to the quotient space if

necessary we may assume that is the equality relation . Now
relabeling as , as , and as , it suffices to
show that

(4.38)

We prove this by induction on . When both sides are
equal to . Now suppose inductively that and
the claim has already been proven for . We observe that
the left-hand side of (4.38) can be rewritten as

where . Applying the inductive hypoth-
esis, this can be written as

(4.39)

Now we work on the right-hand side of (4.38). If is an equiv-
alence class on , let be the restriction of to

. Observe that can be formed from ei-
ther by adjoining the singleton set as a new equivalence
class (in which case we write , or by choosing
a and declaring to be equivalent to (in
which case we write ). Note that the

(4.36)

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 06:05 from IEEE Xplore.  Restrictions apply.



502 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 2, FEBRUARY 2006

latter construction can recover the same equivalence class in
multiple ways if the equivalence class of in has size
larger than , however, we can resolve this by weighting each
by . Thus, we have the identity

for any complex-valued function on . Ap-
plying this to the right-hand side of (4.38), we see that we may
rewrite this expression as the sum of

and

where we adopt the convention . But ob-
serve that

and thus the right-hand side of (4.38) matches (4.39) as desired.

C. Stirling Numbers

As emphasized earlier, our goal is to use our inclusion–exclu-
sion formula to rewrite the sum (4.36) as a sum over . In
order to do this, it is best to introduce another element of com-
binatorics, which will prove to be very useful.

For any , we define the Stirling number of the second
kind to be the number of equivalence relations on a set
of elements which have exactly equivalence classes, thus,

Thus, for instance, ,
, and so forth. We observe the basic recurrence

for all (4.40)

This simply reflects the fact that if is an element of and
is an equivalence relation on with equivalence classes,

then either is not equivalent to any other element of (in
which case has equivalence classes on ), or is
equivalent to one of the equivalence classes of .

We now need an identity for the Stirling numbers.1

Lemma 4.2: For any and , we have the
identity

(4.41)
Note that the condition ensures that the right-hand
side is convergent.

Proof: We prove this by induction on . When the
left-hand side is equal to , and the right-hand side is equal to

as desired. Now suppose inductively that and the claim
has already been proven for . Applying the operator
to both sides (which can be justified by the hypothesis

) we obtain (after some computation)

and the claim follows from (4.40).

We shall refer to the quantity in (4.41) as , thus,

(4.42)

Thus, we have

and so forth. When is small, we have the approximation
, which is worth keeping in mind. Some

more rigorous bounds in this spirit are as follows.

Lemma 4.3: Let and . If ,
then we have . If instead , then

Proof: Elementary calculus shows that for , the
function is increasing for and de-
creasing for , where

1We found this identity by modifying a standard generating function identity
for the Stirling numbers which involved the polylogarithm. It can also be ob-
tained from the formula

S(n; k) =
1

k!
(�1)

k

i
(k � i)

which can be verified inductively from (4.40).
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If , then , and so the alternating series

has magnitude at most . Otherwise, the series has
magnitude at most

and the claim follows.

Roughly speaking, this means that behaves like for
and behaves like for

. In the sequel, it will be convenient to express this
bound as

where

.
(4.43)

Note that we voluntarily exchanged the function arguments to
reflect the idea that we shall view as a function of while
will serve as a parameter.

D. A Second Formula for the Expected Value of the
Trace of

Let us return to (4.36). The inner sum of (4.36) can be
rewritten as

with . We prove the following
useful identity.

Lemma 4.4:

(4.44)

Proof: Applying (4.37) and rearranging, we may rewrite
this as

where

Splitting into equivalence classes of , observe that

splitting based on the number of equivalence classes
, we can write this as

by (4.42). Gathering all this together, we have proven the iden-
tity (4.44).

We specialize (4.44) to the function

and obtain

(4.45)

We now compute

For every equivalence class , let denote the
expression , and let denote the
expression for any (these are all equal since

). Then

We now see the importance of (4.45) as the inner sum equals
when and vanishes otherwise. Hence, we

proved the following.

Lemma 4.5: For every equivalence class , let

Then

(4.46)
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This formula will serve as a basis for all of our estimates. In
particular, because of the constraint , we see that the
summand vanishes if contains any singleton equivalence
classes. This means, in passing, that the only equivalence classes
which contribute to the sum obey .

E. Proof of Theorem 3.3

Let be an equivalence which does not contain any sin-
gleton. Then the following inequality holds:

for all

To see why this is true, observe that as linear combinations of
, the expressions are all linearly independent

of each other except for the constraint .
Thus, we have independent constraints in the above
sum, and so the number of ’s obeying the constraints is bounded
by .

It then follows from (4.46) and from the bound on the indi-
vidual terms (4.43) that

(4.47)
where denotes all the equivalence relations on with

equivalence classes and with no singletons. In other words,
the expected value of the trace obeys

where

(4.48)

The idea is to estimate the quantity by obtaining a re-
cursive inequality. Before we do this, however, observe that for

for all . To see this, we use the fact that is convex
and hence,

The claim follows by a routine computation which shows that
whenever .

We now claim the recursive inequality

(4.49)

which is valid for all , . To see why this holds,
suppose that is an element of and is in

. Then either 1) belongs to an equivalence
class that has only one other element of (for
which there are choices), and on taking that class out one
obtains the term, or 2) belongs
to an equivalence class with more than two elements, thus,
removing from gives rise to an equivalence class

in . To control this contribution, let be
an element of and let be the
corresponding equivalence classes. The element is attached
to one of the classes , and causes to increase by at
most . Therefore, this term’s contribution is less than

But clearly , and so this expression simplifies
to .

From the recursive inequality, one obtains from induction that

(4.50)

The claim is indeed valid for all ’s and ’s. Then
if one assumes that the claim is established for all pairs
with , the inequality (4.49) shows the property for

. We omit the details.
The bound (4.50) then automatically yields a bound on the

trace

With , the right-hand side can be rewritten
as and since , we
established that

otherwise.

We recall that and thus, this last inequality
is nearly the content of Theorem 3.3 except for the loss of the
factor in the case where is not too large.

To recover this additional factor, we begin by observing that
(4.49) gives

since for . It follows that

and a simple induction shows that

(4.51)

which is slightly better than (4.50). In short

where . One
then computes
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Fig. 2. Recovery experiment for N = 512. (a) The image intensity represents the percentage of the time solving (P ) recovered the signal f exactly as a function
of j
j (vertical axis) and jT j=j
j (horizontal axis); in white regions, the signal is recovered approximately 100% of the time, in black regions, the signal is never
recovered. For each jT j; j
j pair, 100 experiments were run. (b) Cross section of the image in (a) at j
j = 64. We can see that we have perfect recovery with very
high probability for jT j � 16.

and, therefore, for a fixed obeying ,
is nondecreasing with . Whence

(4.52)
The ratio can be simplified using the classical Stirling
approximation

which gives

The substitution in (4.52) concludes the proof of Theorem 3.3.

V. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments that suggest
empirical bounds on relative to for a signal supported
on to be the unique minimizer of . Rather than a rig-
orous test of Theorem 1.3 (which would be a serious challenge
computationally), the results can be viewed as a set of practical
guidelines for situations where one can expect perfect recovery
from partial Fourier information using convex optimization.

Our experiments are of the following form.

1) Choose constants (the length of the signal), (the
number of spikes in the signal), and (the number of
observed frequencies).

2) Select the subset uniformly at random by sampling from
times without replacement (we have

).
3) Randomly generate by setting , , and

drawing both the real and imaginary parts of ,

from independent Gaussian distributions with mean zero
and variance one.2

4) Select the subset of observed frequencies of size
uniformly at random.

5) Solve , and compare the solution to .
To solve , a very basic gradient descent with projection

algorithm was used. Although simple, the algorithm is effective
enough to meet our needs here, typically converging in less than
10 s on a standard desktop computer for signals of length

. A more refined approach would recast as a second-
order cone program (or a linear program if is real), and use a
modern interior point solver [6].

Fig. 2 illustrates the recovery rate for varying values of
and for . From the plot, we can see that for

, if , we recover perfectly about 80% of the
time. For , the recovery rate is practically 100%. We
remark that these numerical results are consistent with earlier
findings [5], [30].

As pointed out earlier, we would like to reiterate that our nu-
merical experiments are not really “testing” Theorem 1.3 as our
experiments concern the situation where both and are ran-
domly selected while in Theorem 1.3, is random and can
be anything with a fixed cardinality. In other words, extremal
or near-extremal signals such as the Dirac comb are unlikely to
be observed. To include such signals, one would need to check
all subsets (and there are exponentially many of them), and
in accordance with the duality conditions, try all sign combina-
tions on each set . This distinction between most and all sig-
nals surely explains why there seems to be no logarithmic factor
in Fig. 2.

One source of slack in the theoretical analysis is the way
in which we choose the polynomial (as in (2.15)). The-
orem 2.1 states that is a minimizer of if and only if there

2The results here, as in the rest of the paper, seem to rely only on the sets T
and 
. The actual values that f takes on T can be arbitrary; choosing them to
be random emphasizes this. Fig. 2 remain the same if we take f(t) = 1, t 2 T ,
say.
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Fig. 3. Sufficient condition test for N = 512. (a) The image intensity represents the percentage of the time P (t) chosen as in (2.15) meets the condition
jP (t)j < 1, t 2 T . (b) A cross section of the image in (a) at j
j = 64. Note that the axes are scaled differently than in Fig. 2.

exists any trigonometric polynomial that has ,
, and , . In (2.15) we choose

that minimizes the norm on under the linear constraints
, . (Again, keep in mind here that both

and are randomly chosen.) However, the condition
suggests that a minimal choice would be more appropriate
(but is seemingly intractable analytically).

Fig. 3 illustrates how often the sufficient condition of
chosen as (2.15) meets the constraint , for the
same values of and . The empirical bound on is stronger
by about a factor of two; for , the success rate is
very close to 100%.

As a final example of the effectiveness of this recovery
framework, we show two more results of the type presented
in Section I-A; piecewise-constant phantoms reconstructed
from Fourier samples on a star. The phantoms, along with the
minimum energy and minimum total-variation reconstructions
(which are exact), are shown in Fig. 4. Note that the total-varia-
tion reconstruction is able to recover very subtle image features;
for example, both the short and skinny ellipse in the upper right
hand corner of Fig. 4(d) and the very faint ellipse in the bottom
center are preserved. (We invite the reader to check [1] for
related types of experiments.)

VI. DISCUSSION

We would like to close this paper by offering a few comments
about the results obtained in this paper and by discussing the
possibility of generalizations and extensions.

A. Stability

In the introduction section, we argued that even if one knew
the support of , the reconstruction might be unstable. Indeed,
with knowledge of , a reasonable strategy might be to recover

by the method of least squares, namely

In practice, the matrix inversion might be problematic. Now ob-
serve that with the notations of this paper

Hence, for stability we would need for some
. This is of course exactly the problem we studied, com-

pare Theorem 3.1. In fact, selecting as suggested in the
proof of our main theorem (see Section III-E) gives

with probability at least . This shows that se-
lecting as to obey (1.6), actually provides
stability.

B. Robustness

An important question concerns the robustness of the recon-
struction procedure vis a vis measurement errors. For example,
we might want to consider the model problem which says that
instead of observing the Fourier coefficients of , one is given
those of where is some small perturbation. Then one
might still want to reconstruct via

In this setup, one cannot expect exact recovery. Instead, one
would like to know whether or not our reconstruction strategy
is well behaved or more precisely, how far is the minimizer
from the true object . In short, what is the typical size of the
error? Our preliminary calculations suggest that the reconstruc-
tion is robust in the sense that the error is small for
small perturbations obeying , say. We hope to be
able to report on these early findings in a follow-up paper.

C. Extensions

Finally, work in progress shows that similar exact reconstruc-
tion phenomena hold for other synthesis/measurement pairs.
Suppose one is given a pair of bases and randomly se-
lected coefficients of an object in one basis, say . (From
this broader viewpoint, the special cases discussed in this paper
assume that is the canonical basis of or (spikes
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Fig. 4. Two more phantom examples for the recovery problem discussed in Section I-A. On the left is the original phantom ((d) was created by drawing ten
ellipses at random), in the center is the minimum energy reconstruction, and on the right is the minimum total-variation reconstruction. The minimum total-variation
reconstructions are exact.

in 1D, 2D), or is the basis of Heavisides as in the total-variation
reconstructions, and is the standard 1D, 2D Fourier basis.)
Then, it seems that can be recovered exactly provided that
it may be synthesized as a sparse superposition of elements in

. The relationship between the number of nonzero terms in
and the number of observed coefficients depends upon the

incoherence between the two bases [5]. The more incoherent,
the fewer coefficients needed. Again, we hope to report on such
extensions in a separate publication.

APPENDIX

A. Proof of Lemma 2.1

We may assume that is nonempty and that is nonzero
since the claims are trivial otherwise.

Suppose first that such a function exists. Let be any vector
not equal to with . Write , then vanishes
on . Observe that for any we have

while for we have

since . Thus,

However, the Parseval’s formula gives

since is supported on and vanishes on . Thus,
. Now we check when equality can hold, i.e.,

when . An inspection of the above argument
shows that this forces for all .
Since , this forces to vanish outside of . Since
vanishes on , we thus see that must vanish identically (this
follows from the assumption about the injectivity of )
and so . This shows that is the unique minimizer to
the problem (1.5).

Conversely, suppose that is the unique minimizer to
(1.5). Without loss of generality, we may normalize .
Then the closed unit ball and the affine
space intersect at exactly one point,
namely, . By the Hahn–Banach theorem we can thus find a
function such that the hyperplane
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contains , and such that the half space

contains . By perturbing the hyperplane if necessary (and
using the uniqueness of the intersection of with ) we may
assume that is contained in the minimal facet of
which contains , namely, .

Since lies in , we see that ; since
, we have when . Since
is contained in the minimal facet of containing , we

see that when . Since contains , we see
from Parseval that is supported in . The claim follows.

B. Proof of Lemma 3.4

Set for short, and fix . Using (3.19), we have

and, for example,

One can calculate the th moment in a similar fashion. Put
and

for and . With these notations, we
have

where we adopted the convention that for all
and where it is understood that the condition is

valid for .
Now the calculation of the expectation goes exactly as in Sec-

tion IV. Indeed, we define an equivalence relation on the
finite set by setting

if and observe as before that

that is, raised at the power that equals the number of distinct
’s and, therefore, we can write the expected value as

As before, we follow Lemma 4.5 and rearrange this as

As before, the summation over will vanish unless

for all equivalence classes , in which case the sum
equals . In particular, if , the sum vanishes because
of the constraint , so we may just as well restrict the
summation to those equivalence classes that contain no single-
tons. In particular, we have

(7.53)

To summarize

(7.54)

since

Observe the striking resemblance with (4.46). Let be an
equivalence which does not contain any singleton. Then the
following inequality holds:

To see why this is true, observe as linear combinations of the
and of , we see that the expressions are all

linearly independent, and hence the expressions
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are also linearly independent. Thus, we have inde-
pendent constraints in the above sum, and so the number of ’s
obeying the constraints is bounded by .

With the notations of Section IV, we established

(7.55)
Now this is exactly the same as (4.47) which we proved obeys
the desired bound.
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